Solution-adaptive moving mesh solver for geophysical flows
نویسندگان
چکیده
Dynamical processes occurring in geophysical flows are characterised by the nonlinear interaction of various scales of motion. The accurate numerical representation of such flows is limited by the available number of mesh points covering the domain of interest. Numerical simulations applying uniformly distributed grid cells waste mesh points in regions of large motion scales whereas coexisting small-scale processes cannot be adequately resolved. The current thesis offers the design, implementation, and application of an adaptive moving mesh algorithm for dynamically variable spatial resolution to the numerical simulation of nonlinear geophysical flows. For this purpose, the established geophysical flow solver EULAG was modified and extended. The non-hydrostatic, anelastic equations of EULAG are rigorously implemented in time-dependent generalised coordinates. This setting enables moving mesh adaptation by solving the equations in a straightforward approach developed in this thesis. The methodological development of the new adaptive solver is divided into three tasks: (i) The flux-form Eulerian advection scheme MPDATA employed in EULAG was extended. For transport equations in conservative form, a mass conservation law enters naturally and implies a unique compatibility condition for the solution algorithm. Here, extensions of the Eulerian MPDATA integration were developed, implemented and tested to provide full compatibility with the generalised anelastic mass conservation law (GMCL) under adaptive moving meshes. (ii) A machinery performing the numerical generation of an adaptive moving curvilinear mesh was designed and implemented in EULAG. For this purpose, an auxiliary set of parabolic moving mesh partial differential equations (MMPDEs) was employed to redistribute the existing mesh cells temporally. The solutions of the MMPDEs provide the mesh coordinates and the adaptation properties of the generated moving mesh (e.g. local mesh density) are controlled by a monitor function that varies horizontally and temporally. The form of the monitor function depends inter alia on the flow state. (iii) An efficient coding of the mesh adaptation machinery was successfully incorporated into the computational framework of EULAG. For this task, the approximation of the advective contravariant mass flux in MPDATA was developed and implemented in EULAG so to minimise errors of the incompatibility with the GMCL. The developed adaptive moving mesh solver was thoroughly investigated by simulating a number of relevant atmospheric problems. The advection of a passive tracer in a two-dimensional shear flow demonstrated the capability of the solver to automatically adapt the local resolution to the evolving small-scale filamentary structures. For this flow, the expected advantage of the mesh adaptation was achieved: the computing time (and the error) was reduced significantly by a factor of 26 (by 20%) compared to high-resolution uniform mesh computations. Another advantage of adaptive simulations is the appearance of new physical phenomena. Here, instabilities occurring at the interface of an idealised rising thermal with the ambient air could be simulated in much greater detail. The representation of the associated mixing processes is of direct relevance for simulating cumulus convection in realis-
منابع مشابه
Modelling atmospheric flows with adaptive moving meshes
To better accommodate the highly disparate length scales encountered in geophysical flows, we have extended EULAG with a solution-adaptive moving mesh capability [1]. The development builds on [2], where the authors set forth a time-dependent curvilinear coordinate formulation of the governing PDEs to enable dynamic mesh adaptivity in EULAG. Here, the anelastic flux-form dynamical core of EULAG...
متن کاملHelicopter Rotor Airloads Prediction Using CFD and Flight Test Measurement in Hover Flight
An implicit unsteady upwind solver including a mesh motion approach was applied to simulate a helicopter including body, main rotor and tail rotor in hover flight. The discretization was based on a second order finite volume approach with fluxes given by the Roeand#39;s scheme. Discretization of Geometric Conservation Laws (GCL) was devised in such a way that the three-dimensional flows on arbi...
متن کاملParallel Solution-adaptive Scheme for Multi-phase Core Flows in Rocket Motors
The development of a parallel adaptive mesh refinement (AMR) scheme is described for solving the governing equations for multi-phase (gas-particle) core flows in solid propellant rocket motors (SRM). An Eulerian formulation is used for both the gas and particle phases, which leads to a degenerate hyperbolic system of partial differential equations. The cause and effect of the degeneracy is exam...
متن کاملMoving Mesh Non-standard Finite Difference Method for Non-linear Heat Transfer in a Thin Finite Rod
In this paper, a moving mesh technique and a non-standard finite difference method are combined, and a moving mesh non-standard finite difference (MMNSFD) method is developed to solve an initial boundary value problem involving a quartic nonlinearity that arises in heat transfer with thermal radiation. In this method, the moving spatial grid is obtained by a simple geometric adaptive algorithm ...
متن کاملSimulations of Low Speed Flows with Unified Flow Solver
Low speed gas flows are studied using a Unified Flow Solver (UFS) that automatically selects continuum-fluiddynamic and kinetic solvers for near-equilibrium and kinetic domains. Direct Numerical Solution of the Boltzmann equation is used in the kinetic domains at moderate and high local Knudsen number, while kinetic schemes for Euler or Navier Stokes equations are used in the continuum domains....
متن کامل